Filling in the Afterimage after the Image

2008 First prize
Rob van Lier & Mark Vergeer

Radboud University Nijmegen, The Netherlands

To do:
Fixate your gaze on the center of one of the figures and stare at it for some time (20-30 seconds) while it cycles (without moving your eyes). After several iterations you’ll start noticing that the empty outlines fill in with ghostly redish or bluish colors! These illusory colors are called “afterimages”. Interestingly, the colors of the afterimages vary, which is puzzling because they come from the same original figure. Moreover, the shape of the outlines determines the filled-in color, which is complementary to the color of the same shape in the original figure.
What’s happening?
It is well known that viewing a colored surface can induce a vivid afterimage of the complementary color (for example, the color red induces a greenish/bluish afterimage). Our illusion shows that a colored image can produce different colored afterimages at the same retinal location. The perceived afterimage colors depend on the contours that are presented after the colored image. More specifically, the illusion shows that the afterimage colors spread and mix between those contours. In addition, alternating different contours after the original colored image causes rapidly switching afterimage colors.

See more demos.

Read more about the illusion and possible explanations.

Van Lier, Vergeer, Anstis, 2009, Filling-in afterimage colors between the lines, Current Biology, 19 (8), R323-R324.

Facebooktwittermail
adminFilling in the Afterimage after the Image

Gradient-Offset Induced Motion

Po-Jang Hsieh

Dartmouth College, USA

When a gradient stimulus, whose luminance contrast ranges gradually from white on one side to black on the other, is made to disappear all at once so that only the uniform white background remains visible, illusory motion is perceived. This motion lasts ~700ms, as if the stimulus moves from the low to the high luminance contrast side. This gradient-offset induced motion does not occur for equiluminant color-defined gradient offsets, suggesting that it relies mainly on the magnocellular pathway. We hypothesize that this illusion is caused by the difference of decay rates within the gradient afterimage.

See different versions of the illusion

Illusory motion induced by the offset of stationary luminance-defined gradients Po-Jang Hsieh, Gideon P. Caplovitz & Peter U. Tse Vision Research. 2006. 46:970-8

Facebooktwittermail
adminGradient-Offset Induced Motion